
Environmental Health Perspectives
Vol. 45, pp. 35-40, 1982

Phthalate Esters as Peroxisome
Proliferator Carcinogens
by John R. Warren,* Narendra D. Lalwani,* and
Janardan K. Reddy*

The phthalate ester di(2-ethylhexyl) phthalate is both a peroxisome proliferator and a hepatic
carcinogen. Peroxisome proliferators as a class are hepatocarcinogenic in rodent species.
However, none of the peroxisome proliferators tested to date including the phthalate esters and
related alcohol and acid analogs have demonstrated mutagenic or DNA;damaging activity in the
in vitro Salmonella typhimurium/microsomal or the lymphocyte 3H-thymidine assays. A working
hypothesis is proposed that peroxisome proliferation itself initiates neoplastic transformation of
hepatic parenchymal cells by increasing intracellular rates of DNA-damaging reactive oxygen
production. Evidence which supports such a hypothesis includes increased fatty acid ,-oxidation,
elevated H202 levels, accumulation of peroxidized lipofuscin, disproportionately small increase
in catalase, and elevated peroxisomal uricase activity which accompany peroxisome proliferation
in hepatocytes. Direct testing of this hypothesis will provide insight into mechanisms of
phthalate ester carcinogenicity and cytotoxicity.

A xenobiotic which induces the proliferation of
peroxisomes in liver cells is designated a peroxisome
proliferator. Peroxisomes (microbodies) are single
membrane-limited cytoplasmic organelles which
functionally have been implicated in gluconeogenesis,
lipid metabolism, and the detoxification of H202.
The hypolipidemic agent clofibrate was the first
xenobiotic to be identified as a peroxisome proliferator
(1, 2). Subsequently a large number of other
xenobiotics have been discovered to be peroxisome
proliferators, including structural analogs of clo-
fibrate (nafenopin, methyl cofenapate, SaH-42,
348, and gemfibrozil), hypolipidemic drugs struc-
turally unrelated to clofibrate (tibric acid, Wy-14,643,
BR-931), and a group of miscellaneous compounds
which were not developed for pharmacological
utilization as hypolipidemic drugs but were in-
cidentally discovered to express activity as per-
oxisome proliferators (3, 4). The industrial plasticizer
di(2-ethylhexyl) phthalate (DEHP) and related
plasticizers, including di(2-ethylhexyl) adipate, are
important members ofthe miscellaneous peroxisome
proliferators group (Fig. 1). All peroxisome proli-
ferators studied to date, including DEHP, have
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been observed to induce hepatomegaly and hypo-
triglyceridemia when fed to rodents (5, 6).

Sustained peroxisome proliferation in rodent liver
has been associated with an increased appearance
ofhepatocellular carcinoma. Peroxisome proliferators
which have demonstrated hepatocarcinogenicity in
rodents include nafenopin (7), Wy-14,643 (8), clofibrate
(9), BR-931 and tibric acid (10). The development of
liver tumors in animals fed these five structurally
diverse hypolipidemic drugs led to the conclusion
that peroxisome proliferators as a class are car-
cinogenic (10). Since the formulation of this hy-
pothesis, the industrial plasticizer DEHP has been
observed to induce hepatocellular neoplasms in
both F-344 rats and B6C3F1 mice (11). The reported
carcinogenicity of DEHP in rodents is particularly
disturbing, since DEHP is a common environmental
contaminant (12, 13) and it is probable that human
exposure to DEHP has been extensive. Our lab-
oratories are currently investigating cellular/molecular
mechanisms involved in peroxisome proliferator
carcinogenesis, including DEHP and related plas-
ticizers. In this report, possible mechanisms of
peroxisome proliferator carcinogenesis based on
current knowledge of the properties of these
xenobiotics will be reviewed.

Current models of carcinogenesis indicate both
an initiation and promotion phase in the formation
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FIGURE 1. Proliferation of peroxisomes induced in F-344 rat liver cell cytoplasm by DEHP. 18,000 x.

of neoplasms (14). Initiation of cells for neoplastic
transformation is irreversible and requires inter-
actions of nucleophilic centers in cellular DNA with
electrophilic regions of chemical carcinogens or
carcinogen metabolites (14). An estimate of the
electrophilic reactivity of carcinogens can be obtained
by mutagenicity measurements. We have tested
five different hypolipidemic drugs (clofibrate, nafe-
nopin, SaH-42-348, Wy-14,643 and BR-931), both
structurally related and structurally unrelated to
clofibrate, for in vitro mutagenic activity against
each of the different Salmonella typhimurium test
strains TA98, TA100, TA1535, TA1537 and TA1538.
The hypolipidemic drugs, whether tested without
or with rat liver S-9 microsomal preparation, were
uniformly negative as mutagens in the Ames S.
typhimurium assay (15). Our results have been
extended by de la Iglesia and his co-workers (16),
who reported that the hypolipidemic drug gemfibrozil
or five in vivo metabolites of gemfibrozil isolated
from rat urine were without mutagenic activity
toward the same S. typhimurium tester strains
utilized by us. Gemfibrozil is both a peroxisome
proliferator and hepatocarcinogen in rats (5). Also,

methyl clofenapate in very recent work was not
mutagenic in the Salmonella/microsome assay with
tester strains TA98 and TA100 (17). We have also
utilized the lymphocyte 3H-thymidine assay to test
the five hypolipidemic drugs found by us to be
negative in the Ames assay plus tibric acid for
electrophilic reactivity. The hypolipidemic agents,
tested either with or without rat liver S-9 microsomal
preparation, resembled nonmutagenic drugs and
not mutagenic carcinogens in the lymphocyte 3H-
thymidine assay (15). These data indicate, therefore,
that the hypolipidemic agents fail to behave as
electrophilic reactants capable ofcovalent interaction
with cellular nucleic acid.

In preliminary work, we have tested plasticizers
and related compounds for reactivity in both the
Salmonella/microsome and the lymphocyte 3H-thy-
midine assay. A dose-dependent increase in the
number ofHis + revertant colonies was not observed
over a wide concentration range of the plasticizers
DEHP and di(2-ethylhexyl) adipate (DEHA) when
tested in the absence or presence of rat liver S-9
microsomal mixture with S. typhimurium strains
TA98 and TA100 (Table 1). The related compounds,
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Table 1. In vitro assay of plasticizers with Salmonella typhimurium strains.a

His+ revertants/plateb
TA98 TA100

Compounds Concentration, M --9 + 5-9 -5-9 + 5-9

DEHP 10-2 27 24 105 106
104 28 21 95 97
10e 33 20 111 90

DEHA 10-2 32 27 125 109
104 28 37 110 88
10 20 35 93 108

Ethyl-2-hexanol 10-2 22 24 98 96
10 26 12 105 90
104 23 18 109 108

Ethylhexanoic acid 10-2 22 18 91 90
10-4 35 21 101 94
106 21 27 103 122

as. typhimurium TA98 and TA100 were incubated in the absence or presence of S-9 microsomal mixture on histidine-deficient agar
with carcinogen or plasticizers for 2 days at 37°C.
bAs a positive control, the indirect carcinogen 2-acetylaminofluorene (10 ,ug/plate) added in the presence of S-9 microsomal mixture

was included in each experiment. In the experiment with strain TA98, 690 revertant colonies were counted per plate and with strain
TA100, 353 revertant colonies per plate.

ethyl-2-hexanol and ethylhexanoic acid, were also
without mutagenic activity in the Ames assay
(Table 1). Both 2-ethylhexyl alcohol and 2-ethyl-
hexanoic acid are potent peroxisome proliferators
and it has been suggested that 2-ethylhexyl alcohol
is the active part of the DEHP or DEHA molecule
responsible for peroxisome proliferation (4). Also,
2-ethylhexyl alcohol is a metabolite of DEHP. In
the lymphocyte 3H-thymidine assay, DEHP, DEHA
and ethyl-2-hexanol induced a dose-dependent
inhibition of 3H-thymidine incorporation into the
replicating DNA of proliferating (concanavalin A-
stimulated) C57BL/6J splenic lymphoid cells (Table
2). The dose-dependent inhibition of 3H-thymidine
incorporation into replicating DNA was accom-
panied by a dose-dependent increase in the ratio
of acid-soluble to DNA-incorporated 3H-thymidine
in the plasticizer-treated lymphocytes (Table 2).
This indicates that factors other than suppressed
uptake of exogenous thymidine by plasticizer-
treated lymphocytes are critical for the inhibition
of 3H-thymidine incorporation into DNA (15). To
test whether the inhibition of 3H-thymidine in-
corporation could be due to plasticizer-induced
damage to lymphocyte DNA, plasticizer-treated
lymphocytes were incubated in fresh culture med-
ium without plasticizer. Previous work has estab-
lished that inhibition of 3H-thymidine into repli-
cating lymphocyte DNA induced by DNA-damaging
carcinogens such as methyl methanesulfonate (MMS)
is not reversed by 3 hr incubation of carcinogen-
treated lymphocytes in fresh medium without car-
cinogens (18, 19). However, inhibition of 3H-
thymidine incorporation by non-DNA-damaging drugs
which act by metabolic mechanisms, such as hydroxy-

urea, can be reversed by 3 hr incubation of drug-
treated lymphocytes in fresh medium without drug.
As reported in Table 3, suppression of 3H-thy-
midine incorporation into DNA by DEHP, DEHA
and ethyl-2-hexanol was reversed by incubation
of treated lymphocytes for 3 hr without the com-
pounds. As with other peroxisome proliferators,
therefore, DEHP and DEHA or related alcohol
and acid analogs do not have the properties of
electrophilic mutagens under standard in vitro
conditions of testing.
The fundamental problem arises as to mechanisms

by which peroxisome proliferators initiate cells for
neoplastic transformation. A multienzyme pathway
has recently been identified in rat liver peroxisomes
for the ,3-oxidation of long-chain fatty acids (20),
and peroxisome proliferators have been found to
increase manyfold the capacity of rat liver for the
1-oxidation of fatty acids (21). In particular, the
administration of DEHP resulted in a substantial
increase in peroxisomal palmitoyl-CoA oxidation in
liver homogenates (22). A similar increase in the
peroxisomal fatty acyl-CoA-oxidation system has
been detected following the administration of other
peroxisome proliferators, including clofibrate, nafe-
nopin, Wy-14,643, tibric acid, gemfibrozil and methyl
clofenapate (5). Peroxisomal fatty acyl-CoA oxidation
appears to be independent of an electron transport
chain and results in the production of H202 by
direct transfer of electrons to 02. A sevenfold
increase in the rate of palmitoyl CoA-dependent
H202 generation has been detected in the liver of
rats administered nafenopin (23). Liver tumors as
well as nontumor portions of liver in Wy-14,643-fed
rats have also been found to demonstrate increased
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Table 2. Amount of acid-soluble and DNA-incorporated 3H-thymidine in splenic lymphoid cells treated with plasticizers.a

% of control 3H-thymidine Ratio, acid-soluble 3H-thymidine/
incorporationb DNA-incorporated 3H-thymidinec

Compounds Concentration, M _S_9d +S_9e -s-9 + S_9e

None 0.78 0.41
DEHP 102 55 ± 3 1.44

5xl1O 41± 6 0.73
104 56 10 1.33

5 x 10-5 48 ± 7 0.66
106 64 6 0.93

5 x 10 71 ± 7 0.45
DEHA 10-2 64 ± 9 1.40

5 x 10 69 ± 2 0.52
104 89 ± 7 0.88

5 x l0-5 93 ± 10 0.36
107 119 ± 12 0.63

5 x 106 83 ± 4 0.42
Ethyl-2-hexanol 10-3 28 ± 4 1.86

10 4 108 ± 8 0.59
5x10O 59± 2 0.47
5xlO-5 84± 5 0.39
5x1le 92±10 0.32

aConcanavalin A-stimulated C57BL/6J splenic lymphoid cells were incubated in the absence or presence of S-9 microsomal mixture
in medium without or with plasticizer. Lymphoid cell DNA was labeled with 10 ,Ci 'H-thymidine per culture during the final 30 min of
incubation. Labeled cells were washed three times with phosphate-buffered saline, the labeled cells were transferred to clean glass
tubes, and the cells were precipitated overnight at 4°C with 0.2N perchloric acid. Supernatant was then separated from precipitate by
centrifugation at 850g for 20 min, radioactivity of acid-soluble 3H-thymidine was measured in the 0.2N perchloric acid supernatant by
liquid scintillation spectrometry, and DNA was extracted from the 0.2N perchloric acid precipitate for liquid scintillation
measurement of DNA-incorporated 3H-thymidine.

bIncorporation of 3H-thymidine into DNA was measured for each lymphocyte culture as dpm/,ug DNA. Values of 3H-thymidine
incorporation for control cultures of untreated lymphocytes were taken as 100%. Each reported value was obtained as the mean ± SD
of three replicate cultures of treated lymphoid cells.

cRatio of the mean values of acid-soluble to DNA-incorporated 3H-thymidine obtained in three replicate lymphocyte cultures as
dpmI~Lg DNA.
dLymphoid cells were incubated for 1 hr without or with plasticizer.
eCells were incubated for 2.5 hr without or with plasticizer plus 20% (v/v) S-9 microsomal mixture.

Table 3. Recovery of stimulated rates of 3H-thymidine incorporation by splenic lymphoid cells treated with plasticizers.a

% of control 3H-thymidine incorporationb
Compound Concentration, M 0 hr 3 hr

Without S9C
MMS 10e 74 ± 8 32 ± 11
DEHP 10- 71 ± 10 96 ± 8
DEHP 10- 36 ± 4 58 ± 3
DEHA 10-2 16 ± 8 55 ± 8
Ethyl-2-hexanol 104 39 ± 1 105 ± 18
Hydroxdyurea 104 10 ± 1 110 ± 16

With S-9
DEHP 102 22 ± 4 72 ± 17
DEHA 10 24 ± 14 66 ± 9
Ethyl-2-hexanol 103 13 ± 1 110 ± 22

aConcanavalin A-stimulated C57BL/6J splenic lymphoid cells were incubated in the absence or presence of S-9 microsomal mixture
in medium with plasticizer, carcinogen, or hydroxyurea and were then incubated for the times indicated in fresh culture medium
without plasticizer, carcinogen, or hydroxyurea. Lymphoid cell DNA was labeled with 10 ,uCi 3H-thymidine per culture during the
final 30 min of incubation.

bIncorporation of 3H-thymidine into DNA was measured for each lymphocyte culture as dpm/,ug DNA. Values of 3H-thymidine
incorporation for control cultures of untreated lymphocytes were taken as 100%. Each reported value was obtained as the mean ± SD
of three replicate cultures of treated lymphoid cells.
cLymphoid cells were incubated for 1 hr with carcinogen, plasticizer, or hydroxyurea prior to incubation in fresh culture medium

without added carcinogen, plasticizer, or hydroxyurea.
dCells were incubated for 2.5 hr with plasticizer plus 20% (v/v) S-9 microsomal mixture prior to incubation without plasticizer or S-9

microsomal mixture.
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levels of both peroxisomal fatty acid ,-oxidation
and H202 (24). Increased H202 production by the
proliferated peroxisomes could result in the pro-
duction of OH- by the Haber-Weiss reaction catalyzed
by cellular iron (25). It is suggested, therefore, that
peroxisome proliferation in cells is accompanied by
an increase in the rate of production and perhaps
the steady-state levels of reactive oxygen species in
the cells. Compatible with this proposal is the
excessive accumulation of lipofuscin, indicative of
increased lipid peroxidation, which occurs in liver
parenchymal cells during Wy-14,643- (24) or methyl
clofenapate- (17) induced liver tumorigenesis. Un-
stable oxygen species are highly reactive toward
biological macromolecules, especially DNA. Oxidative
degradation, strand breakage and crosslinking have
been detected in isolated DNA upon interaction
with H202 and OH- (26, 27). Also, H202 has been
found to induce DNA scissions in intact prokaryotic
and eukaryotic cells (28, 29) and chromatid breaks,
chromatid exchanges and unscheduled DNA synthesis
in intact mammalian cells (30, 31). The important
possibility arises, therefore, that sustained per-
oxisome proliferation initiates cells for neoplastic
transformation by increasing intracellular production
of DNA-damaging oxygen species.
Further changes in peroxisomal enzyme profiles

induced by the peroxisome proliferators can be
cited which could serve to increase cellular reactive
oxygen species. First, the increase in peroxisomal
catalase activity is disproportionately small compared
to the increase in peroxisome volume (32) and
H202-generating fatty acid ,B-oxidation (33) induced
by the peroxisome proliferators. It will be recalled
that catalase catalyzes the degradation of H202.
Second, a substantial level of uricase activity has
been detected in the peroxisomes of rodent liver
(34). Although serum and tissue levels of uric acid
have yet to be systematically measured in animals
treated with peroxisome proliferators, increased
levels of hepatic uricase would result in decreased
levels of uric acid. Uric acid is a powerful antioxidant
and is a scavenger of oxygen radicals (35).
The occurrence of DNA damage by reactive

oxygen species can be directly tested as a hypothesis
for the initiation of cells in DEHP carcinogenesis.
Such testing will include measurement of reactive
oxygen formation, assessment of DNA damage
(DNA strand breakage, DNA repair) by oxygen
radicals, and examination of possible modulation by
antioxidants (a-tocopherol, selenium) in phthalate
ester hepatocarcinogenesis. In addition, work is
required to examine possible covalent binding of
isotopically labeled plasticizer to liver cell DNA,
RNA and protein during chronic administration of
plasticizer to rodents. Absence of consistent in
vitro DNA-damaging activity does not necessarily

exclude the formation of electrophilic metabolites
from the plasticizers in liver of the intact animal.
Finally, although no evidence has been reported to
date for tumor promotion by the phthalate esters,
the peroxisome proliferators Wy-14,643 and clofibrate
have been observed to promote the appearance of
hepatocellular carcinoma following initiation in F344
rats by diethylnitrosamine (36). Tumor promotion
is a reversible process which, unlike initiation,
appears not to depend upon covalent modification of
biological macromolecules (14). However, mechanisms
of tumor promotion are poorly understood, and
proposed cellular/molecular mechanisms ofpromotion
as of the date of this report (14) would add little to a
basic understanding ofphthalate ester carcinogenesis.
As a final note, we should stress that chemically

induced peroxisome proliferation is not limited to
rats and mice. Hepatic peroxisome proliferation has
been induced by hypolipidemic drugs in hamsters,
pigeons, chickens, cats, and rhesus monkeys (37,
38). Also, ultrastructural changes in the liver of
human subjects on long-term (6 months to 7 years)
clofibrate therapy included an elevated number of
microbodies (peroxisomes) (39). Consequently, the
potential importance of peroxisome proliferator
carcinogenesis impacts on many species including
the human.
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